Characterizations of generalized paracompact spaces
نویسندگان
چکیده
منابع مشابه
Strongly base-paracompact spaces
A space X is said to be strongly base-paracompact if there is a basis B for X with |B| = w(X) such that every open cover of X has a star-finite open refinement by members of B. Strongly paracompact spaces which are strongly base-paracompact are studied. Strongly base-paracompact spaces are shown have a family of functions F with cardinality equal to the weight such that every open cover has a l...
متن کاملSeparation in Countably Paracompact Spaces
We study the question "Are discrete families of points separated in countably paracompact spaces?" in the class of first countable spaces and the class of separable spaces. Two of the main directions of research in general topology in the last thirty years have been the work of Jones, Bing, Tall, Fleissner, Nyikos and others motivated by the normal Moore space problem (when are discrete familie...
متن کاملA Note on Paracompact Spaces
Let us quickly recall the definitions of the terms which are used in the statement of Theorem 1, and which will be used throughout this paper. Let X be a topological space. A collection <R of subsets of X is called open (resp. closed) if every element of "R. is open (resp. closed) in X. A covering of X is a collection of subsets of X whose union is X; observe that in this paper a covering need ...
متن کاملCharacterizations of $L$-convex spaces
In this paper, the concepts of $L$-concave structures, concave $L$-interior operators and concave $L$-neighborhood systems are introduced. It is shown that the category of $L$-concave spaces and the category of concave $L$-interior spaces are isomorphic, and they are both isomorphic to the category of concave $L$-neighborhood systems whenever $L$ is a completely distributive lattice. Also, it i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 1976
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm-35-1-29-39